Пошук по сайту


Елейска школа - Вступ 2

Вступ 2

Сторінка4/7
1   2   3   4   5   6   7

Елейска школа



Елейска школа досить цікава для дослідження, тому що це одна з найдавніших шкіл, у працях якої математика і філософія достатньо тісно і різнобічно взаємодіють. Основними представниками елейскої школи вважають Парменида (кінець VI - V ст. до н.е.) і Зенона (перша половина V ст. до н.е.).

Філософія Парменида полягає в наступному: усілякі системи світорозуміння базуються на одній з трьох посилок: 1)Є тільки буття, небуття немає; 2)Існує не тільки буття, але і небуття; 3)Буття і небуття тотожні. Вірною Парменид визнає тільки першу посилку. Відповідно до нього, буття єдине, неподільне, незмінне, позачасне, закінчено в собі, тільки воно істинно існуюче; множинність, мінливість, переривчастість, текучість - усе це уділ мнимого.

З захистом навчання Парменида від заперечень виступив його учень Зенон. Древні приписували йому сорок доказів для захисту навчання про єдність існуючого (проти множинності речей) і п'ять доказів його нерухомості (проти рухомості). З них до нас дійшло усього дев'ять. Найбільшою популярністю за всіх часів користувалися зенонові докази проти рухомості; наприклад, "рухомість не існує на тій підставі, що тіло, що переміщається, повинно колись дійти до половини, перед тим як до кінця, а щоб дійти до половини, потрібно пройти половину цієї половини і т.д.".

Аргументи Зенона призводять до парадоксальних, з погляду "здорового глузду", висновків, але їх не можна було просто відкинути як неспроможні, оскільки і за формою, і по змісту задовольняли математичним стандартам тієї пори. Розклавши апорії Зенона на складові частини і рухаючись від висновків до посилок, можна реконструювати вихідні положення, що він узяв за основу своєї концепції. Важливо відзначити, що в концепції еліатів, як і в дозеноновскій науці фундаментальні філософські уявлення істотно спиралися на математичні принципи. Значне місце серед них займали такі аксіоми:

  1. Сума нескінченно великого числа будь-яких, хоча б і нескінченно малих, але протяжних розмірів повинна бути нескінченно великою;

  2. Сума будь-якого, хоча б і нескінченно великого числа непротяжних розмірів завжди дорівнює нулю і ніколи не може стати деяким заздалегідь заданим протяжним розміром.

Саме в силу тісного взаємозв'язку загальних філософських уявлень із фундаментальними математичними положеннями удар, нанесений Зеноном по філософських поглядах, істотно торкнув системи математичних знань. Цілий ряд найважливіших математичних побудов, що рахувалися до цього безсумнівно вірними, у світлі зеноновських побудов виглядали як суперечливі. Міркування Зенона призвели до необхідності переосмислити такі важливі методологічні питання, як природа безкрайості, співвідношення між безупинним і перериваним і т.п. Вони звернули увагу математиків на нетривкість фундаменту їхньої наукової діяльності й у такий спосіб зробили стимулюючий вплив на прогрес цієї науки.

Варто звернути увагу і на зворотну зв'язок - на роль математики у формуванні елейскої філософії. Так, встановлено, що апорії Зенона пов'язані з перебуванням суми безкінечної геометричної прогресії. На цій підставі радянський історик математики Э. Кольман зробив припущення, що "саме на математичний грунті підсумовування таких прогресій і виростили логіко-філософські апорії Зенона". Проте таке припущення, очевидно, позбавлено достатніх основ, тому що воно занадто жорстко зв'язує навчання Зенона з математикою при тому, що існуючі історичні дані не дають підстави підтверджувати, що Зенон взагалі був математиком.

Величезне значення для наступного розвитку математики мало підвищення рівня абстракції математичного пізнання, що відбулося у великому ступені завдяки діяльності еліатів. Конкретною формою прояву цього процесу було виникнення побічного доказу ("від противного"), характерною рисою якого є доказ не самого твердження, а абсурдності оберненого йому. У такий спосіб був зроблений крок до становлення математики як дедуктивної науки, створені деякі передумови для її аксіоматичної побудови.

Отже, філософські міркування еліатів, з одного боку, стали потужним поштовхом для принципово нової постановки найважливіших методологічних питань математики, а з іншого боку - послужили джерелом виникнення якісно нової форми обгрунтування математичних знань.

1   2   3   4   5   6   7

Схожі:

Навчальне електронне видання
Вступ

Вступ
Державна політика інформаційної безпеки І її реалізація в Законодавстві України

Вступ
Перші програми, які створювалися ще для еом першого покоління, писалися безпосередньо на мові машинних код

Вступ. Розвиток української мови. Мета
Плани-конспекти О. П. Глазова «Рідна мова» (В.І. Новосьолова. Л. В. Скуратівський, Г. Т. Шелехова, 2001 р.) 9 клас

Література Вступ
В теорії чисел, математичному аналізі, теорії ймовірності та в обчислювальній математиці широко використовують ланцюгові дроби

Вступ
Стабільність та ефективність роботи будь-якого сучасного підприємства, насамперед залежить від існуючого технічного забезпечення,...

Вступ
Збільшення навантаження на приміські пасажирські перевезення та існуючий технічний стан моторвагонного рухомого складу, особливо...

Тема: Вступ. Матриці та визначники ІІ та ІІІ порядків, методи їх обчислення
Мета: Навчитися обчислювати визначники другого І третього порядків різними способами

Елементи теорії множин Вступ
Навчальний посібник з курсу “Дискретна математика” для студентів базового напрямку 0915 “Комп’ютерна інженерія” / Укладач: Р. Попович...

1. Вступ до алгебри логіки
Кібернетика – наука про загальні закони отримання, зберігання, передавання І обробки інформації в складних системах. Термін «кібернетика»...



База даних захищена авторським правом © 2017
звернутися до адміністрації

a.lekciya.com.ua
Головна сторінка