Пошук по сайту


Елементи теорії множин Вступ

Елементи теорії множин Вступ

Сторінка1/25
  1   2   3   4   5   6   7   8   9   ...   25


Міністерство Освіти і Науки України
Національний Університет “Львівська Політехніка”



Кафедра ЕОМ

Навчальний посібник
з курсу “Дискретна математика”
для студентів базового напрямку 6.0915 “Комп’ютерна інженерія”
Затверджено
на засіданні кафедри
Електронних Обчислювальних Машин
Протокол №  від 24 квітня 2006 року

Львів – 2007


Навчальний посібник  з курсу “Дискретна математика” для студентів базового напрямку 6.0915 “Комп’ютерна інженерія” / Укладач: Р. Попович – Львів: Національний університет “Львівська політехніка”, 2007, с.


Укладач: Р. Попович, к.т.н., доцент
Відповідальний за випуск: Мельник А. О., професор, завідувач кафедри ЕОМ
Рецензенти: Ємець В. Ф., професор кафедри ЕОМ, д. фіз.-мат. н.

Юрчак І. Ю., доцент кафедри САПР, к. т. н.

Елементи теорії множин




Вступ


Дискретна математика є розділом математики, що зародилася в давні часи. Її головною відмінністю є дискретність, тобто антипод неперервності. Дискретна математика включає традиційні розділи математики, які вже сформувалися (математичну логіку, алгебру, теорію чисел), і нові, що інтенсивно розвиваються.

У більш як двотисячорічній історії дискретної математики сучасний період є одним із найінтенсивніших періодів її розвитку: дуже швидко розширюється сфера застосування, інтенсивно зростають обсяги нової інформації та кількість нових результатів. Якщо ще порівняно недавно ця наука була сферою інтересів лише вузького кола фахівців, то тепер вона перетворюється на наукову дисципліну, дуже важливу й потрібну для багатьох, а у сфері сучасної освіти – для всіх.

Масове використання обчислювальної техніки та інформаційних технологій значно розширює сферу прикладних досліджень, у яких все більше застосовується апарат дискретної математики.

Базовим розділом як дискретної математики, так і взагалі всієї математики, є теорія множин.
Коротка історична довідка
Основи теорії множин були закладені відомим німецьким математиком Георгом Кантором у другій половині минулого століття. Поява теорії множин була зустрінута з ентузіазмом багатьма авторитетними математиками. Вони побачили в ній можливість створення метамови математики, тобто формальної одностайної системи понять і принципів, за допомогою якої можна було б викласти з єдиних позицій зміст різноманітних традиційно далеких один від одного розділів математики. Перші такі досить успішні спроби були виконані вже незабаром після виникнення канторівської теорії множин.

Однак пізніші дослідники виявили в теорії Кантора чимало суперечностей: так званих парадоксів або антиномій теорії множин. Виникла кризова ситуація. Одна частина математиків, посилаючись на штучність сформульованих антиномій, вважала за краще не помічати ці суперечності або не надавати їм великого значення. У той час як інша (скажімо, відповідальніша) група математиків зосередила свої зусилля на пошуках більш обгрунтованих та точних принципів і концепцій, на яких могла б бути побудована несуперечлива теорія множин.

У результаті було запропоновано кілька формальних (або аксіоматичних) систем, які служать фундаментом сучасної теорії множин, а значить, фундаментом всієї класичної математики. Важливість цих досліджень серед іншого підкреслює той факт, що значний внесок у становлення аксіоматичної теорії множин зробили такі видатні математики і мислителі XX століття, як Б.Рассел, Д.Гільберт, К.Гедель та ін.

Сьогодні теорія множин - це математична теорія, на якій грунтується більшість розділів сучасної математики, як неперервної, так і дискретної.

Поняття множини. Способи задання множин
Для наших цілей достатньо буде викладення основ так званої інтуїтивної або наївної теорії множин, яка в головних своїх положеннях зберігає ідеї та результати засновника теорії Г.Кантора.

В інтуїтивній теорії множин поняття "множина" належить до первинних невизначальних понять, тобто воно не може бути означено через інші більш прості терміни або об’єкти, а пояснюється на прикладах, апелюючи до нашої уяви та інтуіції. Такими поняттями в математиці є також поняття "число", "пряма", "точка", "площина" тощо.

Канторівський вираз: "Множина - це зібрання в єдине ціле визначених об’єктів, які чітко розрізняються нашою інтуіцією або нашою думкою" - безумовно не може вважатися строгим математичним означенням, а є скоріше поясненням поняття множини, яке заміняє термін "множина" на термін "зібрання". Іншими синонімами основного слова "множина" є "сукупність", "набір", "колекція", "об’єднання" тощо.

Прикладами множин можуть служити: множина десяткових цифр, множина літер українського алфавіту, множина мешканців Києва, множина парних чисел, множина розв’язків деякого рівняння та ін.

На письмі множини позначаються, як правило, великими літерами. Для деяких множин у математиці вживаються сталі позначення. Наприклад, N - множина натуральних чисел, Z - множина цілих чисел, Q - множина раціональних чисел, R - множина дійсних чисел, C - множина комплексних чисел тощо.

Об’єкти, з яких складається задана множина, називають її елементами. Елементи множин позначатимемо малими літерами латинського алфавіту. Той факт, що об’єкт a є елементом множини M записується так: aM (читається: "a належить M" або"a є елемент M"). Для того, щоб підкреслити, що деякий елемент a не належить множині M, вживають позначення aM.

Запис a,b,c,...M використовують для скорочення запису aM, bM, cM,....

Множину називають скінченною, якщо кількість її елементів скінченна, тобто існує натуральне число k, що є числом елементів цієї множини. В іншому разі множина є нескінченною.

Множина є визначеною, коли можна встановити, чи є будь-який об’єкт її членом чи ні.

Для задання множини, утвореної з будь-яких елементів, будемо використовувати два такі способи. В основі обох із них лежить позначення множини за допомогою фігурних дужок.

1. Якщо a1,a2,...,an - деякі об’єкти, то множина цих об’єктів позначається через {a1,a2,...,an}, де у фігурних дужках міститься перелік усіх елементів відповідної множини. З останнього зауваження випливає, що в такий спосіб можуть бути задані тільки скінченні множини. Порядок запису елементів множини при цьому позначенні є неістотним.

Так, множина десяткових цифр записується {0,1,2,3,4,5,6,7,8,9}, множина основних арифметичних операцій - {+,-,*,/} або {*,/,+,-}, множина розв’язків нерівності (x-1)2  0 - {1}.

Слід пікреслити, що однією з основних ідей канторівської теорії множин був розгляд множини як нового самостійного об’єкта математичного дослідження. Тому необхідно розрізняти такі два різні об’єкти, як елемент a і множина {a}, яка складається з єдиного елемента a. Зокрема, множини можуть виступати в ролі елементів якоїсь іншої множини. Наприклад, множина всіх можливих невпорядкованих пар з елементів a, b і c (елементи в парі не співпадають) D = {{a,b},{a,c},{b,c}} складається з трьох елементів і задана цілком коректно.

2. Другий спосіб задання множин грунтується на зазначенні загальної властивості або породжувальної процедури для всіх об’єктів, що утворюють описувану множину.

У загальному випадку задання множини M має вигляд: M = {a | P(a)}.

Цей вираз читається так: "множина M - це множина всіх таких елементів a, для яких виконується властивість P", де через P(a) позначено властивість, яку мають елементи множини M і тільки вони.

S = { n | n - непарне число } або S = { n | n = 2k+1, kZ },

X = { x | x = k, kZ },

F = { fi | fi+2 = fi+1 + fi, iN, f1 = f2 = 1 }.

Другий спосіб є більш загальним способом задання множин. Наприклад, введену вище множину D всіх невпорядкованих пар з елементів a, b і c можна задати так

D = { {x,y} | x{a,b,c}, y{a,b,c} і xy}. (1.1)

У теорії множин використовується поняття порожньої множини. Вона позначається символом .

Множина може взагалі не містити елементів, наприклад

S = {x | x – непарне число, що ділиться на 2} = ;

K = {x | x  R, x2 + 1 = 0} = .

Для позначення цього факту вводиться поняття порожньої множини.

Це поняття відіграє дуже важливу роль при заданні множин за допомогою опису. Так, без поняття порожньої множини не можна говорити про множину відмінників студентської групи або про множину дійсних коренів квадратного рівняння, не пересвідчившись заздалегідь, чи є в студентській групі відмінники або чи має задане рівняння дійсні корені. Поняття порожньої множини дає змогу оперувати множиною відмінників групи, не турбуючись про те, чи є відмінники в групі, яка розглядається. Порожню множину умовно відносять до скінченних множин. Число елементів у ній рівне 0.

Таким чином, уведення порожньої множини дає можливість оперувати будь-якою множиною без попереднього застереження, існує вона чи ні.
  1   2   3   4   5   6   7   8   9   ...   25

поділитися в соціальних мережах



Схожі:

Заняття: Множина та її елементи. Числові множини. Способи задання...
Знайдіть похідні функції І розшифруйте прізвище вченого, роботи якого передували відкриттю поняття похідної

Література Вступ
В теорії чисел, математичному аналізі, теорії ймовірності та в обчислювальній математиці широко використовують ланцюгові дроби

Збірник задач зтеорії
Р. М. Трохимчук збірник задач з теорії множин І відношень. 2-е видання, перероб. І доповн. К.: Рвц “київський університет”, 2000....

Теорія ймовірностей це математична наука, яка вивчає закономірності...
В наш час методи теорії ймовірностей широко застосовуються в теорії надійності, теорії масового обслуговування, теорії інформації,...

1 вихідне положення, самоочевидний принцип. В дедуктивних наукових...
В дедуктивних наукових теоріях аксіомами називають основні вихідні положення чи твердження якоїсь теорії, що приймаються без доведень,...

Індивідуальне завдання з теми «Елементи лінійної алгебри» для студентів...
«Елементи лінійної алгебри» для студентів спеціальності «Монтаж, ремонт І обслуговування електротехнічних систем в апк»

Резюме
Кандидатська дисертація: Галуження розв’язків нелінійних інтегральних рівнянь теорії синтезу антен

Звіт про виконання лабораторної роботи №2-3
За функціональним призначенням: універсальні логічні елементи (і-не,або-не, не,І,або)

Навчальне електронне видання
Вступ

Аксіоми теорії ймовірностей. Теорема додавання ймовірностей
Нехай  – простір елементарних подій. Припустимо, що в  виділена система  підмножин, яка є -алгеброю. Це означає, що



База даних захищена авторським правом © 2017
звернутися до адміністрації

a.lekciya.com.ua
Головна сторінка